Marine Tie Bar

Macalloy Ltd has been the leader in the design, manufacture and supply of threaded bar systems since the 1940's. and have supplied the sheet piling tie bar market for over 60 years.

We leverage this experience to develop solutions for all tying applications, now offering Macalloy tie bars in larger diameters and with upset threads. This catalogue offers an overview of the most popular elements in our product range, reflecting the latest advancements. Macalloy is committed to meeting customer needs any bespoke design can be developed to your specifications.

Offering various grades of threaded bar, modern anchorages solutions utilise connecting elements and fixings that including upset threads, in any length up to M160, tables for upset threads as per EN 1993-5. Our technical department is always available to assist you. Expanding material stocks and facilities allowed Macalloy to offer larger diameters to meet the market demands, the choice and design of anchorage depend on structural requirements.

Quality

As you would expect from a company as experienced as Macalloy, all our products and systems follow strict quality guidelines. We adhere to procedures as laid down in BS EN ISO 9001.

Safe Working Loads

For constant loads, structural safety of anchor walls, waling's, capping beams, and end plates must be designed in accordance with Eurocode 3, Part 5. It is based on limit state design rather than the factor of safety method.

Threads

All bars are supplied with standard metric threads to BS3643. A wide range of compatible end connections have been developed to complement the bars, all of which are designed to match the bar capacity.

Upset Thread

Upset threads are formed to increase the cross-sectional area of the thread to ensure that the design resistance of the shaft and the threaded section are comparable. In addition to standard round steel tie rods with threads at both ends, anchors with upset eyes are available for specific connections. Upset forging allows for larger threads with minimal added weight, ensuring the shaft remains the weakest part. In case of failure, this design provides greater warning of serviceability issues.

Standard Fittings

Standard tie bar assemblies include a nut, washer, and plate tailored to bearing conditions at each end. For length adjustment and slack removal, a central turnbuckle with right and left-hand threads is available. If adjustment isn't needed, a full-strength coupler can be used.

Components

Articulated or pin joints address tie bar sag and forced deflection from fill settlement, which can increase local tensile stress and induce shear stress. These joints should be placed close to the pile and can include LH/RH thread adjustment like a turnbuckle.

Washers

Taper or spherical seating washers are used when the tie bar's axis isn't perpendicular to its seating. Profiled anchor blocks are available for tie bars exiting the pile at an angle, such as at a corner.

Plates

Plates transmit loads, with dimensions depending on the marine tie bar design. Washer plates are for tie bars anchored within sheet pile pans, bearing plates for loads transmitted through walings, and anchorage plates for distributing loads to concrete walls or blocks.

Bar Length

Tie bars are supplied in 11.8-meter lengths. Longer tendons can be connected using couplers, turnbuckles, link plates, or hinged turnbuckles.

Steel Grades

Our anchors, ranging from M68 to M160 in diameter, Tie Bars are available in grades 460, 550, 650, and 750. Higher strength steel offers lighter anchors but may not meet all requirements. For details on other available grades, contact Macalloy

Steel Grade	TB460	TB550	TB650	TB750
Characteristic yield stress (N/mm ²)	460	550	650	750
Characteristic Failure Stress (N/mm²)	610	750	850	950
Minimum Elongation	19%	18%	15%	13%

Macalloy Tie bar has the following mechanical properties. If there is a higher requirement for the impact absorption energy of 27 Joules at -40°C or -60°C it can be achieved.

Ultimate Limit State

4

Symbol	Description
Ftt,Rd	Design tensile resistance of anchor thread
Ftg,Rd	Design tensile resistance of anchor shaft
Fyt,Rd	Design resistance at yield stress / 0.2% proof stress of anchor thread
Fyg,Rd	Design resistance at yield stress / 0.2% proof stress of anchor shaft
Kt	Notch Factor
Fua	Tensile strength of anchor
Fy	Yield stress of anchor
As	Stressed cross-sectional area, thread
Ag	Gross cross-sectional area, shaft
Ym2	Partial safety factor for anchor shaft stressed up to failure
Умо	Partial safety factor for anchor shaft

The thread capacity of an anchor is reduced by the factor k_t to account for additional stresses from fill settlement or less-than-ideal installation conditions, as per EN1993-5

According to many EN1993-5 National Annexes, use a conservative k_t value of 0.6 unless structural detailing eliminates bending, in which case 0.9 can be used.

Formula	Characteristic
Ft,Rd = min (Ftt,Rd ; Fyt,Rd)	Design resistance, thread:
Ftt,Rd = kt*Fua*As/\jm2	Failure in thread:
Fyt,Rd =Fy*As/¥M0	Yield stress, thread:
Fg,Rd = min (Ftg,Rd ; Fyg,Rd)	Design resistance, shaft:
Ftg,Rd = Ag*Fua/YM2	Failure in shaft:
Fyg,Rd = Fy*Ag/∛M0	Yield stress, shaft:
Fu,Rd = min (Ft,Rd ; Fg,Rd)	Design resistance, anchor:

According to EN1993-5, the design resistance of the anchor $F_{u,Rd}$ is the lesser value between the thread's design resistance $F_{t,Rd}$ and the shaft's design resistance $F_{g,Rd}$.

Corrosion Protection

Steel sheet piles are used in many aggressive environments and consequently corrosion protection or factors influencing effective life must be considered. Several options are available to the designer. Consider sacrificial steel, protective tape, or coating systems, with sacrificial steel often being the most cost-effective and durable. Corrosion protection for anchors should be prioritized at the design stage, especially at the connection to the front wall, where anchors are most exposed to aggressive conditions and prone to failure.

Sacrificial Corrosion

Sacrificial Corrosion is the most practical and robust corrosion protection. The anchor shaft and thread are increased in diameter to account for steel loss over the structure's lifespan, eliminating the need for additional coatings. Tables 4-1 and 4-2 of EN1993-5 provide corrosion allowances for steel sheet piles, and these rates are commonly applied to tie bars as well.

Required	design	working	life	
----------	--------	---------	------	--

Non-compacted and non-aggressive fills (clay, slate, sand, silt)

Note: For compacted fills the EN1993-5 allows the corrosion rate to be halve

Required design working life

Freshwater (river, canal, ...) in the region of the waterline

Severely polluted freshwater (wastewater, industrial wastewater) in the region of the waterline

Seawater in a temperate climate in the region of the waterline (low water and splash water zones)

Seawater in a temperature climate in the underwater or tidal zones.

Note: At design stage, sacrificial corrosion allowance in the fill can be determined separately to the sacrificial corrosion allowance at the head.

Protective Tape

A common form of corrosion protection is to wrap the bar with a protective barrier containing oxygen scavengers, Macalloy can supply factory-wrapped bars with the Denso range of products that uses petrolatum tape to protect anchors, but connections must be wrapped on-site, which can significantly extend installation time.

Coating Systems

Anchors can be coated with any client-specified system needed to withstand the demanding environment, several options are available, such as paint systems, galvanising or zinc epoxy primer. The threads can only receive a nominal zinc coating when hot-dip galvanized or painted with zinc epoxy primer, therefore further protection may still be required on completion of the installation.

Protection of the Anchor Head

Adequate protection should be provided to the anchor head detail, as it is often situated in challenging site conditions. The anchor head, particularly vulnerable, can only be fully protected after installation.

5 Years	25 Years	50 Years	75 Years	100 Years
0.18	0.7	1.2	1.7	2.2
ved.				
5 Years	25 Years	50 Years	75 Years	100Years
0.15	0.55	0.9	1.15	1.4
0.3	1.3	2.3	3.3	4.3
0.55	1.9	3.75	5.6	7.5
0.25	0.9	1.75	2.6	3.5

Nominal Diameter	ØDt	Metr	с М68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
Churrent Anna Thursent			7055	74/0	7000	10.10	5501	(077	(005	7765	0555	0705	11101	10140	17145	14101	1/770	17507	1071/	100.40	01010	00570	07000	050(0	001/5
Stressed Area, Thread	As	mm	3055	3460	3889	4948	5591	6273	6995	7755	8555	9395	11191	12148	13145	14181	16370	17523	18716	19948	21219	22530	23880	25269	28165
Shaft Diameter	d	mm	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165
Area, Shaft	Ag	mm	2376	2827	3318	3848	4418	5027	5675	6362	7088	7854	8659	9503	10387	11310	12272	13273	14314	15394	16513	17671	18869	20106	21382
Grade 460 - Anchor Force to EN1993-5			M68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
Design Resistance, Shaft	F _{g,Rd}	kN	1093	1301	1526	1770	2032	2312	2610	2926	3261	3613	3983	4372	4778	5202	5645	6106	6584	7081	7596	8129	8680	9249	9836
k =0.6 Design Posistance Thread	E	μM	905	1017	1170	1440	1677	1077	2049	2271	2505	2751	3277	3557	2010	4152	4703	5171	5490	59/1	6217	6507	6002	7700	9247

Grade 46	0 - Anchor Force to EN1993-5			M68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1093	1301	1526	1770	2032	2312	2610	2926	3261	3613	3983	4372	4778	5202	5645	6106	6584	7081	7596	8129	8680	9249	9836
k _t =0.6	Design Resistance, Thread	F _{t,Rd}	kN	895	1013	1139	1449	1637	1837	2048	2271	2505	2751	3277	3557	3849	4152	4793	5131	5480	5841	6213	6597	6992	7399	8247
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	895	1013	1139	1449	1637	1837	2048	2271	2505	2751	3277	3557	3849	4152	4793	5131	5480	5841	6213	6597	6992	7399	8247
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1093	1301	1526	1770	2032	2312	2610	2926	3261	3613	3983	4372	4778	5202	5645	6106	6584	7081	7596	8129	8680	9249	9836
k _t =0.9	Design Resistance, Thread	F _{t,Rd}	kN	1342	1519	1708	2173	2455	2755	3072	3406	3758	4126	4915	5336	5773	6228	7190	7696	8220	8761	9320	9895	10488	11098	12370
	Permissible Design Resistance	$F_{u,Rd}$	kN	1093	1301	1526	1770	2032	2312	2610	2926	3261	3613	3983	4372	4778	5202	5645	6106	6584	7081	7596	8129	8680	9249	9836

Grade 55	0 - Anchor Force to EN1993-5			M68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1307	1555	1825	2117	2430	2765	3121	3499	3899	4320	4762	5227	5713	6220	6750	7300	7873	8467	9082	9719	10378	11058	11760
k _t =0.6	Design Resistance, Thread	F _{t,Rd}	kN	1100	1245	1400	1781	2013	2258	2518	2792	3080	3382	4029	4373	4732	5105	5893	6308	6738	7181	7639	8111	8597	9097	10139
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	1100	1245	1400	1781	2013	2258	2518	2792	3080	3382	4029	4373	4732	5105	5893	6308	6738	7181	7639	8111	8597	9097	10139
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1307	1555	1825	2117	2430	2765	3121	3499	3899	4320	4762	5227	5713	6220	6750	7300	7873	8467	9082	9719	10378	11058	11760
k _t =0.9	Design Resistance, Thread	F _{t,Rd}	kN	1650	1868	2100	2672	3019	3387	3777	4188	4620	5073	6043	6560	7098	7658	8840	9463	10107	10772	11459	12166	12895	13645	15209
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	1307	1555	1825	2117	2430	2765	3121	3499	3899	4320	4762	5227	5713	6220	6750	7300	7873	8467	9082	9719	10378	11058	11760

Grade 65	0 - Anchor Force to EN1993-5			M68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1544	1838	2157	2501	2872	3267	3688	4135	4607	5105	5628	6177	6751	7351	7977	8628	9304	10006	10733	11486	12265	13069	13899
k _t =0.6	Design Resistance, Thread	F _{t,Rd}	kN	1247	1412	1587	2019	2281	2559	2854	3164	3491	3833	4566	4957	5363	5786	6679	7150	7636	8139	8658	9192	9743	10310	11491
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	1247	1412	1587	2019	2281	2559	2854	3164	3491	3833	4566	4957	5363	5786	6679	7150	7636	8139	8658	9192	9743	10310	11491
	Design Resistance, Shaft	$F_{g,Rd}$	kN	1544	1838	2157	2501	2872	3267	3688	4135	4607	5105	5628	6177	6751	7351	7977	8628	9304	10006	10733	11486	12265	13069	13899
k _t =0.9	Design Resistance, Thread	F _{t,Rd}	kN	1870	2117	2380	3028	3422	3839	4281	4746	5236	5750	6849	7435	8045	8679	10018	10724	11454	12208	12986	13788	14615	15465	17237
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	1544	1838	2157	2501	2872	3267	3688	4135	4607	5105	5628	6177	6751	7351	7977	8628	9304	10006	10733	11486	12265	13069	13899

Grade 75	0 - Anchor Force to EN1993-5			M68	M72	M76	M85	M90	M95	M100	M105	M110	M115	M125	M130	M135	M140	M150	M155	M160	M165	M170	M175	M180	M185	M195
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1782	2121	2489	2886	3313	3770	4256	4771	5316	5890	6494	7127	7790	8482	9204	9955	10735	11545	12385	13254	14152	15080	16037
k _t =0.6	Design Resistance, Thread	F _{t,Rd}	kN	1393	1578	1773	2256	2549	2860	3190	3536	3901	4284	5103	5540	5994	6466	7465	7991	8535	9096	9676	10274	10889	11523	12843
	Permissible Design Resistance	$\mathbf{F}_{u,Rd}$	kN	1393	1578	1773	2256	2549	2860	3190	3536	3901	4284	5103	5540	5994	6466	7465	7991	8535	9096	9676	10274	10889	11523	12843
	Design Resistance, Shaft	$\mathbf{F}_{g,Rd}$	kN	1782	2121	2489	2886	3313	3770	4256	4771	5316	5890	6494	7127	7790	8482	9204	9955	10735	11545	12385	13254	14152	15080	16037
k _t =0.9	Design Resistance, Thread	F _{t,Rd}	kN	2090	2366	2660	3384	3824	4291	4784	5305	5852	6426	7655	8310	8991	9700	11197	11986	12802	13645	14514	15411	16334	17284	19265
	Permissible Design Resistance	$F_{u,Rd}$	kN	1782	2121	2489	2886	3313	3770	4256	4771	5316	5890	6494	7127	7790	8482	9204	9955	10735	11545	12385	13254	14152	15080	16037

Link Plates, Hinged Turnbuckles and Cardan Joints

Forged eyes and link plates offer the most economical articulated joint and the simplest connection for site conditions.

Hinge turnbuckles create a joint for both tensioning and articulated connections, enables length adjustment and articulation in one plane.

Link Plates or Articulated Turnbuckles are available to counter the effect of tie bar sag and forced deflection due to settlement fill.

The cardan joint enables bars with forged eyes to articulate in both vertical and horizontal planes. Removing the forced deflection due to site requirements significantly reduceing the tensile stress in the tie bar locally.

U and Z Pile Anchor Wall connection

Round steel tie rods are a cost-effective anchoring solution for sheet pile walls. Typically, horizontal reaction forces are first transferred from the sheet pile walls to a waling beam and then to the tie rods, providing more distributed load transfer and added stiffening compared to direct tie rod connections

Anchor spacing is determined by the sheet pile wall's system width.

Typically, waling sections are positioned on the non-bearing side at the anchor wall

8

Combi Wall Connection

Connections to combined sheet piling with tubular piles are typically made using T-connections that pass through the pile wall and are introduced from above.

Anchor forces on high modulus piles are usually high, so articulated connections such as a link plate are recommended to permit vertical articulation.

HZ-M Wall tension plates

Tension plates are positioned on either side of the HZ-M web, forces transfer from the HZ-wall to the forged eye anchor bar via a pin connection

For expected settlement, the anchor connection should be hinged to permit vertical movement and prevent bending stresses at threaded joints.

Concrete Wall Connection

Anchor forces are transferred directly to the concrete wall via the plate. Proper alignment between the front wall and anchor wall connection points is crucial.

A simple end plate connection is commonly used. when the anchor is laid in filled ground and settlement is likely an additional hinged connection joint is necessary.

Link Plates are ideal for special connections and expected settlements.

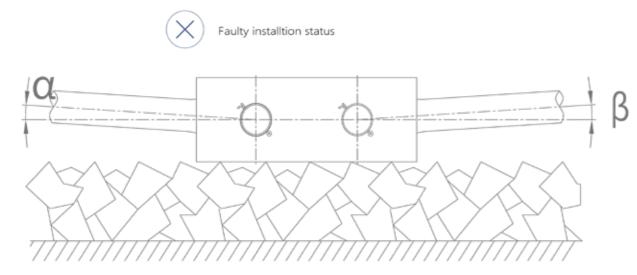


Fig. 2 The shaft and unidirectional hinge are directly placed on the ground, and shaft is tilted

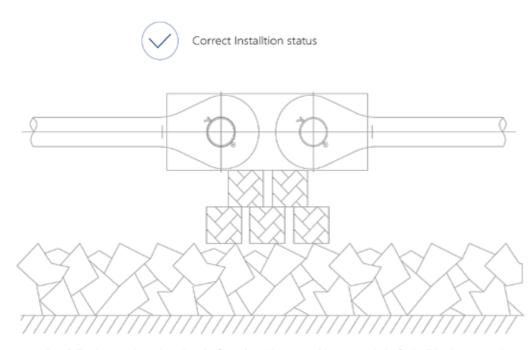


Fig. 3 Timber is placed under shaft and unidirectional hinge, and shaft shall be horizontal

Tie bars are assembled with component bars supported at the correct level, with slack removed by tightening the end nut. Typically, they reach their working load during backfilling, as pile movement induces load into the tie bars.

Waling Bolts

Macalloy offers waling bolts in various grades to complement its tie bars. Waling bolts, made from the same steel as TB460, can be threaded at both ends, with customizable lengths.

Supply

Most major projects require rolling raw materials to the specific project diameter, which can be adjusted to the nearest millimetre for the most economical solution.

Storage

Tie rods and accessories must be stored and handled to prevent deformation, corrosion, heat exposure, bending, or damage. Welding or flame cutting on tie rods and accessories is prohibited without written approval from Macalloy. All components must be protected from heat exposure on site.

Assembly

Due to shipping restrictions, anchors are typically delivered in sections up to 11.8 m. Sections should be assembled on-site to design lengths to ensure threads are clean and undamaged. All threaded connections must engage at least one thread diameter.

While we strive for accuracy, we cannot guarantee the completeness of all details. Customers should verify product suitability for their needs. This data does not constitute a contractual offer. As part of our continuous improvement policy, we may amend details without notice. For current information, please contact our technical department; technical@macalloy.com

Installation

Anchors should be installed as close as possible to their expected line of force. Consider additional forces from fill settlement, especially bending at the wall connection. For long anchors, use a stiff lifting beam with supports every 4-6 meters. Settlement ducts can reduce bending but require careful alignment to be effective.

Prestressing of Anchors

Pre-loading anchors is most efficiently done using a hydraulic jack at the threaded end. This should be considered during the design stage for practicality.

Site services

Macalloy offers training for assembly, installation, and stressing, for more information, please contact our site services department; siteservices@macalloy.com

TUAS SOUTH SHIPYARD, SINGAPORE

Tie Rod Type: ø60, ø65, ø80 Tensile Strength: Grade 460 Total QTY: 2250pcs Total Weight: 1970 ton

SUONA PORT, EGYPT.

Tie Rod Type: ø90 Tensile Strength: Grade 700 Total Weight: 300 ton

KARACHI DEEP WATER PORT, PAKISTAN.

Tie Rod Type: ø150, ø140 Tensile Strength: Grade 550 Total QTY: 609pcs Total Weight: 5500 ton

For further information call +44 (0)1909 519200 email sales@macalloy.com or visit macalloy.com Caxton Way, Dinnington, Sheffield, S25 3QE, U.K.